Some variables haven t sufficient effectiveness to give an important result. We can say that these values perturbate the model.
I have choosed two methods to remove some unnecessary variables .
- Low correlations (abs(corrélation)<0,1) : list 1 :householdsize, racePctAsian, agePct12t21, agePct16t24, agePct65up, pctUrban, pctWRetire, indianPerCap, PctEmplManu, PctEmplProfServ, PctWorkMomYoungKids, PersPerOccupHous, PctVacMore6Mos, MedOwnCostPctInc, MedOwnCostPctIncNoMtg, PctBornSameState, PctSameCity85, PctSameState85
- Opposite variables or our targetted values on the two by two matrix on the kohonen clustering research : list 2 : racePctWhite, pctUrban, pctWWage, pctWInvInc, pctWRetire, PctEmploy, PctFam2Par, PctKids2Par, PctYoungKids2Par, PctTeen2Par, PctWorkMom, PctSpeakEnglOnly, PersPerOccupHous, PersPerOwnOccHous, PctHousOccup, PctHousOwnOcc,MedYrHousBuilt, PctBornSameState, PctSameHouse85, PctSameCity85, PctSameState85
Removed values in two lists
List
|
RMSE
|
MAE
|
MSE
|
ARV
|
|
linear regression
|
1
|
0,13825
|
0,10049
|
0,019112
|
0,52324
|
2
|
0,134
|
0,097173
|
0,017957
|
0,49161
|
|
PLS regression
|
1
|
0,13671
|
0,098719
|
0,018691
|
0,5117
|
2
|
0,13291
|
0,09554
|
0,017665
|
0,48362
|
|
SVM Polynomial
|
1
|
0,13048
|
0,091957
|
0,017025
|
0,46611
|
2
|
0,12925
|
0,089951
|
0,016705
|
0,45733
|
|
Neural network
|
1
|
0,13788
|
0,09764
|
0,019011
|
0,52048
|
2
|
0,13351
|
0,095503
|
0,017824
|
0,48797
|
No comments:
Post a Comment