November 19, 2012

Predict by classes

In cutting our individuals data in more than one group , we can obtain more than one model. In using the SVM classification to automatically classify new data we obtain this result.
The result is better on all result. The best fit is for two or three classes. After this threshold the model become more unstable. 



Portioning of ours classes

Classe 1 Classe 2 Classe 3 Classe 4
4 classes 110 441 351 192
3 classes 381 596 117
2 classes 626 468


Nb classes
RMSE
MAE
MSE
ARV
Linear regression
2
0.13763
0.099092
0.018942
0.51857

3
0.13501
0.096144
0.018227
0.49899

4
0.21412
 0.13089
0.045847
1.2551
PLS regression 
2
0.13245
0.094019
0.017542
0.48025

3
0.13047
0.091678
0.017021
0.466    

4
0.14783
 0.10862
0.021853
0.59828
SVM Polynomial
2
0.12929
0.092427
0.016715
 0.4576

3
 0.12763
0.09117
0.016288
0.44593

4
 0.14822
0.1032
0.021969
0.60146
Neural network
2
0.13692
0.10066
0.018747
0.51323

3
 0.17428
0.13354
0.030374
0.83156

4
0.18433
0.13045
0.033976
0.93016


No comments:

Post a Comment